
A resource-agents robot control architecture: design and
formalization

Abstract. This article introduces a robot control architecture that
explicits the management hardware and information resources, and
sketches a formal definition. The architecture is defined by a network
of agents, that interact through the exchange of constraints on the
resource they embed. The agents are composed of a logic layer, that
selects and configure the tasks to achieve to satisfy the constraints set
on the agent, and an executive layer, that is in charge of the proper
achievement of the selected tasks. The inter-agent mechanisms that
guarantee the good use of each resource, solve resource conflicts and
handle execution errors are detailed. The article then introduces a
formal description of the proposed architecture, that expresses the
various logic and execution processes involved using the Concurrent
Logic Framework. This formalization aims at establishing various
properties, in order to assess a guaranteed behavior.

1 Introduction: on control architectures
The robotic community has produced numerous achievements in
a wide spectrum of functionalities (perception, planning, control,
learning ...), but yet autonomous versatile robots are not a tangi-
ble reality. Robot autonomy not only requires a collection of smart
functionalities, but also a proper assembly of these functionalities.
For this purpose, several frameworks have been proposed in the lit-
erature to encapsulate computation and communication processes,
and it is now admitted that component-based frameworks provide
good modularity and reusability properties (significant examples are
GenoM [1], OROCOS [2] or ROS [3] – see e.g. [4] or [5] for a sur-
vey). But while they allow to assemble functionalities, these frame-
works do not convey principles to control these functionalities, i.e. to
configure, schedule, trigger, coordinate and monitor the associated
processes. This is the role of a control architecture to structure and
control the available functionalities, according to the context, in or-
der to autonomously achieve missions [6, 7]. A control architecture
should be designed in order to endow the robot with (i) the capac-
ity to achieve a variety of high level missions, and (ii) the capacity
to cope with a variety of events which are not necessarily a priori
known, in a mostly unpredictable world. Besides these two general
characteristics of autonomy, a control architecture must satisfy the
following requirements:

• Reactivity and deliberateness. Robots evolve in dynamic environ-
ments and must react accordingly. Meanwhile, they must be able
to reason on models to plan tasks, especially to achieve missions
that involve complex behaviours, dealing with time constraints
and payload management, etc.

• Modularity and composability. For versatile robots to be able to
handle various missions, the architecture must be modular and
composable: introducing new functions or new behaviours should

not break the existing assembly, nor require any major rewriting
of its definition. The enabling and disabling of functions at run-
time should also be supported. Component-based development en-
vironments provide this composability property, but at the lower
functional level: this property should be extended to the overall
control architecture.

• Concurrency. Robots are highly concurrent systems, within which
multiple tasks run in parallel, accessing and modifying a finite
set of resources. They must be able to reason about their global
state and the mission at hand to ensure a consistent and efficient
behaviour, and in particular to avoid resource conflicts.

• Robustness. Most of the functionalities a robot is endowed with
can fail. Whatever causes the failures, the robot should be able not
only to detect and identify them, but also to recover them when
possible.

• Validation. Robots are complex systems that interact with a com-
plex environment. It is necessary to know the answer to some cor-
rectness and safety questions such as "will the robot always stop
before hurting someone?". Nowadays, developers mostly rely on
testing to assess such properties. But testing only increases the
confidence on the robot behavior, and cannot prove any property:
a formal validation is necessary for this purpose.

Finally, the architecture must ease the task of the robot program-
mer. In particular, preventing resource conflicts and defining error re-
covery procedures rapidly becomes cumbersome as the complexity
of the system increases: providing means to handle this complexity
is essential.

This article introduces roar (Resource Oriented Architecture for
Robots), an architecture which aims at satisfying these requirements.
roar proposes a control architecture decomposed into a network of
agents, each one encapsulating one resource. The activities of an
agent encompass both deliberation and execution. They are driven
by constraints set on the agent, and ruled by a formalized logic en-
gine. The overall behaviour of the system is defined by the interac-
tions between the agents, which in particular allow to handle resource
conflicts and to recover execution errors.

Outline. The article is decomposed in two parts. The first part de-
scribes in a precise way the roar architecture. Section 2 briefly re-
views the main existing robot control architectures, and analyses to
what extent they satisfy the above requirements. Section 3 presents
the rationale of the roar architecture and its design principles. Sec-
tion 4 depicts the design of a resource agent and its internal deliber-
ation and execution mechanisms, and section 5 depicts how agents
interact to lead to a global coherent behaviour, robust to errors and
concurrent accesses to resources.



In a second part, we focus on the encoding of roar in a logical for-
malism. Section 6 briefly reviews encoding and validation proposals
for robotics system, and the solutions to formalize concurrent sys-
tems. Section 7 recalls the basics of the concurrent logic framework,
which is used in 8 to formalize the roar architecture. A discussion
concludes the article.

Part I

A resource oriented robot control
architecture
2 Related work
The first architecture paradigm for the control of autonomous robots
consisted in splitting the activities within three sub-systems accord-
ing to the sense-plan-act scheme (SPA architecture) [8]. The sens-
ing system derives environment models from the perceived data, the
planner generates a plan to achieve the goal, the plan execution is
handled by the execution system, and the overall loop is iterated until
the goal is reached. But the model generation and planning are hard
problems, and consequently the loop can become very slow, limit-
ing the possibility to behave in an uncertain and dynamic world – as
argued in [9]. Two different paradigms then emerged, often referred
to as “reactive architectures” and “layered architectures”. Reactive
architectures reject the classic AI paradigm, and suggest that auton-
omy arises from the interaction of elementary behaviours – one of
the most known being the subsumption architecture [10]. Follow-
ing these precepts, different multi-agents systems appeared, focusing
on the interactions between agents [11, 12]. The second paradigm
is rather centred on symbolic planning. It introduces an intermedi-
ate layer between high-level planning and reactive behaviours (“3-
layer architectures”), that handles the realisation of the plans, while
preserving the capacity to react to the current situation [9, 13, 14].
These architectures raise two issues: first, each layer uses different
information representations, which leads to inefficiency execution or
error recovery. Second, due to their monolithic approach, each layer
becomes less and less efficient when the complexity of the robot
grows. More recently, “2-layer architectures” have been introduced
[15, 16] to tackle these issues, using a set of agents defined along
a uniform representation between executive and planning processes.
But the modularity of these approaches is limited by their require-
ment on a strict order between agents.

3 Approach: a graph of resource agents
The principle of partitioning the robot functionalities into a set of
components is essential to simplify the overall system control and
keep reactivity. To define the partition, one must address the follow-
ing issues:

• how to decompose the system into components, while preserving
the modularity and allowing parallelism?

• how to organize the components: what information are exchanged
among them, how conflicts and errors are handled?

In roar , the components are agents that encapsulate one resource
and its associated logic. Formal rules describe the evolution of the
system, the interactions between agents, and the means to handle re-
source conflicts and error recovery.

From actions to resources. There are three different ways to de-
fine an action of the robot. The simplest case is an elementary action,
that has a direct implementation in the functional layer. The second
case is a sequence of elementary actions (possibly with conditionals),
that are simply executed step by step. The last case is probably the
most frequent: an action is a plan defined by a specialized planner.
The generated plan can be a set of actions (recursively defined) or
a special construction which is executed by a specific component of
the functional layer (e.g. a trajectory follower). Sequences and plans
can be described as a tree, where leaves are elementary actions or
sequence of actions, and nodes are supervision processes of small
sense-plan-act loops. On board a robot, several actions can be exe-
cuted in parallel, leading to a forest of actions, with possible overlaps
between the different trees, i.e. concurrent accesses to some subsys-
tems.

Actions are naturally the key elements to consider within a con-
trol architecture, which purpose is to select, trigger and control them
according the current context and the mission at hand. But the usual
SPA loop is often implicitly understood sequentially in the sense-
plan-act order, whereas we view it the other way around: actions
needs to be planned or decided, and plans or decisions require infor-
mation, the information on the environment being provided by per-
ception. According to this, we envision the activities of the robot as
constraints propagations on resources. The term “resource” is under-
stood in its most general sense: a resource can be a physical resource,
an information resource or a planification resource. For example, to
reach a given position, a mobile robot must ensure that it has an en-
vironment model (which can require data acquisition), on which it
regularly plans a trajectory (the plan is an information), and finally it
exploits the locomotion motors (a physical resource) to achieve the
trajectory. The overall GoTo(x,y) action can also be viewed as a
constraint on the robot position to satisfy.

This decomposition upon resources has several advantages over
a classical task-oriented decomposition. First, it maps more directly
the functional layer, which is mostly data-driven. Second, the con-
currency problem is related to resources, not to tasks: expliciting re-
sources eases the reasoning about them. Finally, defining relations
between resources is more declarative and generic than explicitly
defining the steps necessary to provide the resource: for instance, if
a 3D-points cloud is required, one does not need to specify whether
it is produced by a lidar, stereovision or a Kinect sensor.

Resource agents. In roar , a robot is modelled as a set of re-
sources, each one being encapsulated by a single agent. These agents
form a graph through the exchange of messages that encode con-
straints. The definition of these constraints must be as expressive as
possible for the developer, while allowing to reason about their impli-
cations: we propose to represent them using logic formulae. In pres-
ence of multiple concurrent constraints on the same resource agent,
the agent can decide with classical logic if it can enforce them, or if
it needs to reject some. This guarantees the correct access to the re-
source in a deterministic way, and keeps the system openness: when-
ever an agent is added or activated, if it tries to access to an already
used resource, its request will be rejected (with some informative
context) and the system will continue to operate.

Once an agent has decided to enforce a constraint, it must find a
way to execute it, considering its internal state and its environment.
A situation is defined as a set of logic propositions, and the execution
recipes are parametrized by a situation. The agent evaluates the situ-
ation to decide which method it will select to enforce the constraint.
The situation description yields a good expressiveness for the devel-
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Figure 1. Overall structure of a resource agent. The thick lined tasks are the one currently selected by the logic layer, the thick lined recipes are the ones
selected by the execution layer – several tasks can be activated in parallel, whereas only one recipe is active for each active task.

oper, it is syntactically coherent with the constraints formulation, and
it allows a deterministic behaviour of the agent.

The roar framework. To sum up, the robot is modelled as a
dynamic graph, where node are agents encapsulating one resource,
and edges are the constraints between these agents at time t. The
roar framework is in charge of maintaining this graph, ensuring that
the required relations are satisfied. For this purpose, each agent is en-
dowed with a solver that locally enforces the constraints set on it and
controls concurrent accesses. Any problem (concurrency issue, fail-
ure in the functional layer, unexpected situation) is asynchronously
treated as it occurs: if it cannot be handled by the involved agent,
the failure goes back through the graph until it is solved by a fixed
policy, or in the last resort by a human operator – if any.

In this way, the framework can handle a variety of problems with-
out changing the definition of each agent: the system adapts the in-
formation graph to handle the problem at hand, and the different con-
straint solvers locally schedule the access to the resources. roar al-
lows a coherent reasoning on resources, and considerably eases the
definition of supervision schemes.

4 A roar agent
This section depicts the inner architecture of a resource agent: it in-
troduces the syntax used to describe the agents and the associated
algorithms.

4.1 Overview
A roar agent is composed of three parts (figure 1): a context which
is exposed to other agents, and that in particular specifies the con-
straints the agent can enforce, a logic layer that selects the appropri-
ate tasks to enforce these constraints, and an executive layer that is
in charge of selecting a recipe to achieve each of the selected tasks.

Constraints are received through messages emitted by other
agents. Upon reception of a new constraint, the logic layer assesses
whether the constraint can be enforced or not: if yes, it selects the
tasks to activate to enforce it. The logic layer ensures the coherency
of the internal agent state. This state is a logic state: it is defined as
a set of propositions, and a task is a transition between two logic
states. The task specification is not exposed to other agents, so it
can be modified without impacting them. Moreover, it only relies on
resources and logic formulae, and does not depend on details of the
functional layer: it can therefore be reused in different robot contexts.

Tasks describe the possible transitions between two logic states,
not the way to effectively achieve these transitions: this is handled
by the executive layer, which selects an appropriate recipe for each
task to achieve. Developers can implement multiples recipes to han-
dle one task, to allow different behaviour depending on the agent
state, the available agents, . . . Note that at this level robot or middle-
ware specific functions can be used, in which case recipes may not
be directly transferable between different platforms.

4.2 Agent description
The roar framework exposes basically the default data types bool,
string, int and double, and equality and comparison propositions.
Each agent can extend the interface, by proposing new product type
(similarly to the struct construction in C – for example, one agent
can expose the type point, which is composed of three double).
Moreover, it can expose some functions which manipulate such types
and some associated logical rules. For example, one can declare the
function distance which takes in arguments two points, and returns
a double and states the symmetry rules for distance:

∀A, B : point distance(A, B) == distance(B, A)

Each agent expresses its context, i.e. a set of typed variables which
represents its state. The context is divided in three different sets, each



one corresponding to a different access policy. The controllable vari-
ables {Cv} are readable and writable by any other agent, and define
the primary interface to control an agent. {Rv} represents the set of
variables readable by any agents, and describes the main informa-
tion (or reference to) encapsulated by the agent. Last, {Pv} defines
the internal states of the agent, and so other agents cannot access it.

4.3 Logic layer
A task is defined as a transition between two logic states. It does
not have any implementation, but only declares requirements and ef-
fects. From a developer perspective, a task can also be viewed as an
interface with a certain contract, as in [17], i.e. some pre- and post-
conditions. Contrarily to a classic notion of contract, they have here
an active role, as they are used to decide if a constraint can be han-
dled, and how.

To decide if a task T can handle a specific constraint, the logic
layer tries to solve the following Horn clause:

PostT
1 ∧ PostT

2 ∧ · · · ∧ PostT
i ∧ R1 ∧ · · · ∧ Ri → C

where C is the constraint to handle, PostT
i represents the ith post-

conditions of the task T (containing no free variables, nor univer-
sal quantification), and Rk represents the rules associated to the do-
main of the constraint (for example, if a task contains a reference to
a point, the rules associated to distance will be used). If the clause
can be directly proved, it means that the task T matches the con-
straint. In this case, the system checks the pre-conditions of task T ,
adds all failed pre-conditions to the list of constraint to handle, and
recursively tries to find a solution to these constraints using a par-
allel first-depth search. If there is no direct solution, but a solution
under certain hypotheses, these hypotheses are added to the list of
constraint to handle. Moreover, at each step, the agent removes from
its search space the selected task, and the tasks incompatible with it1.
In this way, the process is guarantee to terminate, as the number of
tasks is finite, and decreases at each step.

Once the agent finds a complete solution, it commits its task tree
in the agent context, i.e. it hides the tasks required to fulfill the con-
straints (and the tasks incompatible with them) in the agent context.
This ensures that other constraints cannot trigger a task incompatible
with the ones used to handle the current constraint. If the agent fails
to commit the task tree (when some of the required tasks happen to
be not available anymore), the process restarts, using the new list of
tasks.

4.4 Executive layer
A recipe describes a way to achieve a task. While tasks can be viewed
as an interface with a precise contract, recipes can be viewed as a spe-
cialisation of this interface, with a possibly stricter contract (i.e. more
pre-conditions). It is defined by a situation (or pre-conditions) i.e. the
valid states in which the agent can execute it, and a body (or imple-
mentation) i.e. a sequence of (possibly parallels) actions which de-
scribe what to do to achieve the task.

Recipe syntax. Two important primitives allow to exchange con-
straints between agents: make and ensure, respectively with syn-
chronous and asynchronous behaviours. Informally, make <predi-
cate> sends the predicate constraint to a remote agent, and waits
for its answer (success or failure), while ensure returns directly the

1 Two tasks are incompatible if their post-conditions leads to inconsistency.

constraint identifier and assumes that the constraints holds until it is
aborted (“manually” with the abort primitive, or automatically when
the recipe ends). The recipe fails if one of its ensure primitive fails.
The Wait <predicate> primitive allows to block the recipe execution
until the predicate becomes true. Last, let permits to introduce a new
local variable in the scope, while set allows to modify the agent con-
text.

Recipe selection. Several recipes can be associated to a given task,
to allow the system to adapt at best to the current situation. The actual
recipe to activate must therefore be selected within the ones that are
acceptable.

A recipe r is an acceptable choice if:

domain(r) ⊂ available_agents

all preconditions o f r are evaluated to true

Of course, if there are no acceptable recipe, the task fails to ex-
ecute. But if there is more than one acceptable recipe, the one to
activate can for instance be the one that satisfies the largest number
of preconditions. Other heuristics can be defined to achieve this se-
lection, e.g. selecting the recipe that implies the smallest number of
other agents, or exploiting cost functions to select the “most efficient”
recipe. The definition of this selection process and associated heuris-
tics or rules is an important entry point that allows the programmer
to intervene in the overall robot control scheme.

5 Interactions between agents

Agents asynchronously interact through messages that specify con-
straints to enforce and messages that inform about the status of the
constraint enforcement. We depict here the three mechanisms that
define the agent interactions, to ensure that propagated constraints
are properly enforced, to recover errors and to handle concurrency
issues.

5.1 Constraint handling

An agent handles constraints according to the state machine shown
figure 2. Constraint requests go through different states, each state
corresponding to a specific message. When receiving a new con-
straint request, the agent computes a task tree, and then executes
it. The request enters in the running state only when a recipe cor-
responding to the constraint handling is executed (and not one of its
internal preconditions). This recipe can success, and so lead to suc-
cess state, or fail, and so enter in the temporary failure. From this
state, the agent can try to find a local solution to the failure; if it finds
one, the request enters back in the running state, otherwise, it enters
in the failure state – the recovery process is depicted in section 5.2.
Messages can change the state of the constraint request handling: the
abort message (from abort, or automatically sent at the end of the
recipe) changes the state to aborted. Last, the request handling can
enter in the paused state if the agent receives a pause message, and
goes back to running state through the continue message.

The paused state is important to guarantee the consistency of the
system. Consider a classic SPA loop composed of three concurrent
constraint (sensing_ctr, plan_ctr and exec_ctr). If the satisfaction of
the plan_ctr temporary fails, the agent needs to ensure that an old
(maybe invalid) plan is not being executed: in reaction of a tempo-
rary failure of a constraint Ci, and agent pauses all the constraints
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Figure 2. State machine to process the constraint requests

C j which depends on Ci to ensure the safety of the robot. Figure 3
exhibits the message exchanged between agents in such a situation.

From an execution point of view, the paused state for a recipe is
equivalent to the following steps:

1. interrupt the current synchronous primitive
2. forward a pause message to all current constraints
3. wait for a continue message
4. upon reception of a continue message, restart the interrupted syn-

chronous primitive.

5.2 Error handling

Unexpected events (or errors) often occur during robotic missions,
and it is essential to properly handle them in order to autonomously
achieve the mission.

Local errors. Some errors can be predicted, when the developer
knows the limitations of the functional layer or how to handle certain
non-nominal situations. The developer can encode this knowledge
using dedicated recipes whose preconditions check the known situ-
ations (this is nearly equivalent to exception handlers, as proposed
by Simmons [18]). For this purpose, the primitive last_error? can be
used.

But in the general case, the developer can hardly provide an
explicit management for any possible error. In unpredicted failure
cases, the agent tries to select another recipe which does not contain
the faulty condition. Let the constraint_domain of a recipe the set of
constraints it emits. The definition for a valid recipe at a time t is then
extended as :

domain(r) ⊂ available_agents

constraint_domain(r) ∩ error_context = ∅

all preconditions o f r are evaluated to true

A B C
init A:0

run A:0

init A:1

run A:1

temporary failure A:0

pause A:1

run A:0

continue A:1

run A:1

temporary failure A:0

pause A:1

failure A:1

abort A:1

aborted A:1

Figure 3. Exchanged messages between 3 agents in case of partial failure.
Here the satisfaction of constraint A:1 depends on the satisfaction of A:0: a
temporary failure in the satisfaction of A:0 pauses the satisfaction of A:1.

The agent selects one of this valid recipe according to the spec-
ified selection heuristic, and then executes it. In case a new failure
occur, the error_context is filled accordingly. It is clear that every
time an error occurs, the number of valid recipes decreases: this pro-
cess eventually terminates, which means that the agent cannot handle
the task at hand. The next solution for the agent is to find another set
of tasks to handle the constraint. For this purpose, the system reuses
the method described in 4.3, after having removed the faulty tasks
from the set of available tasks.

System level errors. When an agent cannot locally recover a fail-
ure with the above mechanism, the failure goes up in the agent graph,
with the full error_context. Each agent tries to fix the error locally,
using the complete error_context to take its decision, i.e. the con-
catenation of its local error_context and the error_context of the
agents in the failure chain. In this way, agents can efficiently decide
an alternative solution: the history of the current constraint handling
deters them to select paths leading to failures in the overall graph.

5.3 Managing concurrency
The logic engine of an agent rejects any new constraint Cnew conflict-
ing with the constraints it is currently enforcing using algorithm de-
scribed in 4.3. However, this algorithm can not differentiate whether
Cnew is rejected because the agent has no mean to enforce it, or be-
cause one of the required task is temporally masked. The second case
is a concurrency issue on a resource: an important feature of roar is
the ability to autonomously handle such issues.



This is handled by searching a solution of the system described
in 4.3 for each task, and not only for each available tasks. Here, one
only check whether there is one task that can handle the constraint
on not: if yes, there is a concurrency issue, otherwise it means that
the agent is not able to handle Cnew.

The calling context of a constraint C is defined as the ordered stack
of constraints whose enforcement generated a call to the constraint
C (it is equivalent to the notion of call stack in classic imperative
programming).

When the agent detects a concurrency issue with the constraint
Cnew, the agent retrieves the calling context associated to the conflict-
ing constraint Ci returned by the algorithm2 , and sends it back to the
calling agent that emitted Cnew. The calling agent then searches a so-
lution, by asking successively to each agent that emitted a constraint
of the calling context if it can find an alternate solution to solve the
constraint Ci+1 without using the conflicting constraint Ci. For this
purpose, each involved agent first evaluates if there are recipes as-
sociated to the current tasks for which Ci does not appear in their
context_domain. If not, it searches for an alternate executable tasks
set that does not imply the enforcement of Ci. If it finds a solution to
enforce Ci+1 without emitting Ci, it updates its internal configuration
to activate the new recipes (or tasks), and sends OK to the calling
agent, which the tries again to enforce Cnew. Otherwise, it sends a
not-OK, and the calling agent checks the agent associated to the next
entry of the calling context, and so forth. If the calling context can
not be cleared, the concurrency issue cannot be solved and is treated
as a standard error, using the error recovery process depicted above.

Part II

A model for the roar architecture
6 Related work
Robot control architectures aim at providing solutions to interleave
decisional, control and functional processes in order to en sure adap-
tiveness and robustness – and so does roar . Validating the architec-
ture to guarantee the proper behaviour of the robot has seldom been
considered: we review here the main existing contributions.

6.1 Robot control architecture validation
In [19], the author proposes to use a process algebra to specify and
analysis its control language called Robot Schemas. The Orccad ar-
chitecture [20] and the associated language maestro [21] propose
an encoding of the controller in the synchronous language esterel,
which allows to use Petri net tools to prove properties. In [22], the
authors propose a translation from the robotic language tdl [18] to
a specification language smv, and then apply model checking tech-
niques. But this translation is partial and so deduction on the sys-
tem is limited. Moreover, the tdl is just a part of the NASA Remote
Agent architecture [23], and so the model does not capture the whole
architecture. In [24], the LAAS architecture is extended with the r2c
layer: it contains a logic model representing wished constraints and
allows to verify that commands sent from the control layer matches
the model. While this approach ensures the satisfaction of constraints
on the robot and prevents incorrect uses, it does not help the devel-
oper to write correctly the control layer, nor to fix it. More recently,

2 In the general case, the described method returns a list of conflicting con-
straints {Ci}, and the process is actually applied to the associated list of
calling contexts.

[25] exploits the bip formalism [26] to produce a formal model of the
functional layer. Constraints can be added on the generated model,
and then (partially) validated by formal tools like D-Finder [27]. At
run-time, the bip engine detects inconsistent transitions and rejects
them. But this approach has the same drawbacks than r2c from the
point of view of the control layer developer.

6.2 Logic execution models

One of the hard point about validating a control architecture is the
interleaving of deliberation and (concurrent) execution, which usu-
ally rely on different models. Concurrent executions has been stud-
ied through different formal tools like Petri nets, or processes al-
gebras (in particular π-calculus [28]) while deliberation is mostly a
logic process. Girard introduced in [29] the linear logic, a new sub-
structural logic which has had an important impact on the study of
concurrent systems. [30] proposes to extend the Curry-Howard cor-
respondence for concurrent systems, considering formulas as pro-
cesses, and modelling dynamic behaviours by proof-search. Follow-
ing this correspondence, [31] encodes the π-calculus and [32] pro-
poses acl, a concurrent linear logic language, which allows to repre-
sent messages and processes at the same (logic) level. More recently,
[33] introduces clf , a concurrent logic framework, using a different
representation: concurrent computations are represented as monadic
objects, separating in this way “classic computation” from concur-
rent ones. Last, Lollimon [34] extends the operational semantic of
clf to provide a new concurrent linear logic programming language.
In particular, it interprets differently proof search inside and outside
the monad constructor: outside, it uses a classic backward-chaining,
with backtracking, while inside, it uses forward chaining and com-
mitted choice which naturally models concurrency.

7 Background

clf is a logic framework, i.e. a formal meta-language specifically de-
signed to represent and reason about programming languages, log-
ics, or any formalisms that can be described as deductive systems.
The paradigm of such a framework is to define the evaluation of a
language as some signatures in the framework type theory, and then
deduction on the language can be subsumed to a type inhibition prob-
lem in the framework type theory. The type theory of clf is based on
linear logic, a sub-structural logic in which the use of contraction and
weakening rules are carefully controlled. In particular, linear logic
introduces the linear implication( which consumes operands on its
left to produce operands on its right, which allows to efficiently rep-
resent state evolutions. The exponential connective ! (often called “of
course” operator) expresses that a resource can be used as much as
desired, and so makes possible to encode the intuitionist implication
→. Andreoli [35] splits the different connectives of linear logic in two
categories: asynchronous and synchronous (which respectively cor-
respond to determinism and non-determinism in the proof search).
This separation appears clearly in clf with the monad which encap-
sulate synchronous primitives, allowing to preserve the semantic of
llf outside the monad. The type constructor theory of clf can be
described as :

A, B ::= Πx : A.B | A( B | A & B | > | {S } | P asynchronous

P ::= a | P N Atomic

S ::= S 1 ⊗ S 2 | 1 | ∃x : A.S | A synchronous



Asynchronous types can be respectively defined by the dependant
function type Πx : A.B, the linear function type A ( B, the addi-
tive product A & B, the additive unit type >, an atomic type P or a
synchronous type encapsulated in the monad constructor {S }. Atomic
types are the constants, and the type level dependent application P N,
where N is an object. Last, the synchronous type includes the product
type S 1 ⊗ S 2, the unit multiplicative type 1, and the dependant pair
type ∃x : A.S . Moreover, we can use syntactic sugar like A→ B (the
intuitionist function type) for Πx : A.B if B does not contain any free
occurrence of x and !A for ∃x : A.1. A more complete description of
the clf framework is available in [36].

8 Formalization

Using clf , we propose in this part an encoding of the roar oper-
ational semantic. First, we propose some generic computation pat-
terns, like the notion of sequential execution, references. After that,
we describe respectively how it is possible to encode the algorithm
used to select tasks, then, how we can represent the selection and the
execution of sequences.

8.1 Generic computation patterns

Following the proposal of [37], we choose a destination-passing style
representation. We start with the types exp T which represents an
expression returning a T ; val T which represents a value of types T ;
and dest T , a destination of type T . The operational semantic is based
on two family types, eval (E D) which evaluates E with destination
D, and return (V D) which returns the value V to destination D.
Informally, without special effects, if we have a linear assumption
eval (E D), then there is a computation return (V D) if and only if
the evaluation of E yields V .

Let’s first introduce some generic computation patterns. The first
one is the sequential execution llet E1 (λx.E2 x) which must first eval-
uate E1 and then use its result to compute E2. It can be encoded as
follows:

eval_llet : eval (llet E1 (λx.E2 x) D)

( {∃d1 : dest T.eval (E1 d1)

⊗ (ΠV1 : val T.return (V1 d1)( {eval ((E2 V1) D)})}.

This encoding presents an interesting behaviour. First, it creates a
fresh destination d1 and then create two processes using the ⊗ oper-
ator. The first one evaluate E1 in d1, and the second waits until there
is a corresponding return assumption in the logic store. When E1 is
finally evaluated, the return (V1 d1) is consumed, and starts a new
process which which evaluate E2, considering the previously com-
puted value V1.

Each agent contains variables representing its state (internal
or not): these variables are represented by references. Informally,
newre f E1 creates a new reference with the result of the expression
E1, assign (E1 E2) modifies the reference represented by the com-
putation of E1 by the result of the computation of E2, and dere f E1

returns the value stored in the reference represented by E1. cell is
used to generate a reference from a destination, and contains (C V)
means that the cell C contains the value V . These three propositions
are formalized as follows:

eval_newre f : eval ((newref E1) D)

( {∃d1 : dest T.eval (E1 d1)

⊗ (ΠV1 : val T.return (V1 d1)

( {∃c : dest T.contains (c V1) ⊗ return ((cell c) D)})}.

eval_assign : eval ((assign (E1 E2)) D)

( {∃d1 : dest(re f T ).eval (E1 d1)

⊗ (ΠC1 : dest T.return ((cell C1) d1)

( {∃d2 : dest T.eval (E2 d2)

⊗ (ΠV2 : val T.return (V2 d2)

( ΠV1 : val T.contains (C1 V1)

( contains (C1 V2) ⊗ return ((void′) D)})})}.

eval_dere f : eval ((dere f E1) D)

( {∃d1 : dest T.eval (E1 d1)

⊗ (ΠC1 : dest T.return ((cell C1) d1)

( ΠV1 : val T.contains (C1 V1)

( contains (C1 V1) ⊗ return V1 D})}.

It is interesting here to note the usage of a linear function, which
allows to easily represent the imperative behaviour, by consuming
(and possibly) recreating linear hypotheses.

Agents exchanges constraints through discrete messages. There
are two kinds of messages: msg T , which represents a message en-
capsulating a value of type T , and channel chan T , which denotes a
way to exchange msg T . writeMsg (E1 E2) takes an expression E1

representing a channel, an expression E2 representing a message, and
adds the necessary predicate to the linear context. readMsg E1 takes
an expression E1 representing a channel and returns when the agent
can read a message on this channel. We now presents how these be-
haviours can be translated in clf : here, the linear function ensures
that messages are consumed when used, and so will not be treated
twice.

eval_writeMsg′ : eval ((writeMsg′ (Ch M)) D)

( {(msg Ch M) ⊗ return ((void′) D)}

eval_writeMsg : eval ((writeMsg (E1 E2)) D)

( {eval (llet E1 (λCh

llet E2 (λV.(writeMsg′ (Ch V))))) D}.

eval_readMsg′ : eval ((readMsg′ Ch) D)

( {ΠV : val T. msg Ch V

( {return (V D)}}.

eval_readMsg : eval ((readMsg E1) D)

( {eval ((llet E1 (λCh.(readMsg′ Ch)) D)}.

Representing natural numbers is required for several algorithms.
Here, we use a classical logic interpretation, starting by the type z,
representing zero, and the type family s nat, which represent the suc-
cessor of a natural. For example, 3 can be represented as s (s (s z)).
Lists can be represented similarly, using a default type nil, and the
constructor cons. The following shows how it is possible to evaluate
the less or equal test on natural numbers:



eval_less_eq : eval ((less_eq M N) D)

( {∃d1 : dest nat.eval (M d1)

⊗ (return (z d1)( {return (True D)}

& (ΠV1 : val nat. return ((s V1) d1)

( {∃d2 : dest nat. eval (N d2)

⊗ (return (z d2)( return (False D)

& (ΠV2 : val nat. return ((s V2) d2)

( {eval ((less_eq V1 V2) D)}))})}.

8.2 Logic layer formalization
Now, we propose to encode the task selection process, described in
section 4.3. To simulate the timing bound, we use a reference to a
natural, and remove one at each step of the proof. If it reaches zero,
the agent can not compute the proof in the limit, and returns False.
The following fragment needs to be added to each rule, but for clarity
and brevity, we only describe it once.

eval_limit : eval ((limit R) D)

( {∃d1 : nat. eval (R d1)

⊗ (return (z d1)( {return (False D)}

& (Πn : nat.return ((s n) d1)

( {∃d2 : dest void.eval ((assign (R n)) d2)

⊗ return (True D)}))}.}.

The only notable point is this encoding is the use of the additive
product & to represent the branch notion in the algorithm.

To encode the proof search, we introduce three new family types:
thm which represent a theorem, hyp that represents the forward
chaining part, and prove which represents the backward chaining
process. In the following encoding, we use the intuitionist function
operator← instead of the linear function operator (and the ‘of course’
operator ! inside the monad) , as a proof does not consume any re-
source, but only use facts.← or→ are used to respectively emphasize
the backward chaining and forward chaining semantic. Beyond that,
the encoding is quite simple, just transcribing classic deduction rules
into the proper clf connectives.

h f alse : hyp f alse→ {ΠC : thm :!C}

hand : hyp(and A B)→ {!A⊗!B}

hymp : hyp A→ hyp (imp A B)→ {!B}

hall : hyp(all A)→ {Πx : thm.!(hyp A !x)}

hsome : hyp(some A)→ {∃x : thm.!(hyp A !x)}

proveand : prove (and A B)← prove A & prove B

proveimp : prove (imp A B)← (hyp A← prove B)

proveall : prove (all A)← (Πx : thm.prove (A !x))

provesome : prove (some A)← {∃x : thm.prove (A !x)}

provetrue : prove True.

proh : proveA← {!(hypA)}.

8.3 Executive layer formalization
The section 4.4 describes two important mechanisms in the execution
process: the selection of a recipe, and its execution.

This selection process is encoded as follows in clf . First, pre is a
recursive function which evaluates if all pre-conditions are satisfied
and the number of pre-conditions (it returns a pair composed of a
Boolean and a natural number N). Then, select is a recursive func-
tion, which iterates over the list of recipes L, and checks if the current
recipe is better than the currently selected recipe R. The recursion is
started with the full list of recipes, a nil recipe, and N equal to 0.

eval_pre : eval ((pre R N) D)

( {∃d1 : dest(list T ).eval (R d1)

⊗ (return (nil d1)( return (( f alse,N) D)

& (return ((cons E1 E2) d1)

( {∃d2 : dest(bool).eval (E1 d2)

⊗ ((return (False d2)

( {eval ((pre E_2 s(N)) D)}

) & (return (True d2)

( return ((False,N) D)))}))}.

eval_select : eval ((select L R N) D)

( {∃d1 : dest(list T ).eval (L d1)

⊗ (return (nil d1)( return (R D)

& (return ((cons E1 E2) d1)

( {∃d2 : dest(U).eval (E1 d2)

⊗ ((return ((False, _) d2)

( {eval ((select E2 R N)) D)}

) & (return ((True,K) d2)

( {∃d3 : dest(bool).

eval ((less_eq K N) d3)

⊗ ((return (True d3)

( {eval ((select E2 R N) D)})

& (return (False d3)

( {eval ((select E2 E1 K) D)}))})}))}.

As described previously, a recipe is a sequence based on a few dif-
ferent primitives. We now formalize each of these primitives. Then,
the whole recipe is only the chaining of these different primitives,
using the llet operator. let and set are quite easy to encode with the
use of the reference notion previously introduced. We associate to
each recipe a special channel, which indicates to each operation if
it must continue (True) or stop (False). The encoding of wait shows
its usage, and some others interesting features: first, it is recursive,
and second, it uses the & clf operator to express that the framework
must execute only one branch. It is also important to note that we add
again the recipe status after its use, so others operations can see it in
the linear context. The encoding of make is relatively easy too: it
sends the message composed of the constraint and the private chan-
nel to answer, and then creates two processes: the first one waits for
an answer on this private channel, while the other waits for a in-
terruption message from the recipe(has_abort): in this case, it just
writes “Abort” on the private channel, which leads to the termination
of the make primitive. The encoding of ensure is quite similar, but
it returns directly after sending the message, and creates two others
processes: one which checks for abort message as for make, and one
which checks messages from remote agents (answer). The constraint
identifier is represented as a private channel, and so abort is trivially
encodable: it just writes “Abort” on this channel.



eval_let : eval ((let E1 E2) D)

( {eval (llet (newre f E1) (λx. (assign (x E2) D)}.

eval_set : eval ((set E1 E2) D)

( {eval (assign (E1 E2)) D)}.

eval_has_abort : eval ((has_abort Ch1 Ch) D)

( {(msg Ch False)

( {∃d1 : dest(void).

eval ((writeMsg (Abort Ch1)) d1)

⊗ (msg Ch False)})}.

eval_make : eval ((make E1 C Ch) D)

( {∃Ch1 : Chan S . ∃d1 : dest(void).

eval (writeMsg (E1 (C,Ch1)) d1)

⊗ (ΠV1 : void.return (V1 d1)

( {eval ((readMsg Ch1) D)

⊗ (∃d2 : dest(void).

eval ((has_abort Ch1 Ch) d2)})}

eval_answer : eval ((answer Ch1 Ch) D)

( {∃d1 : destT.eval (readMsg Ch1 d1)

⊗ (return (True d1)

( {eval ((answer Ch1 Ch) D)})

& return (False d1)

( {eval ((writeMsg (Abort Ch)) D)}

& return (Abort d1)

( {eval (writeMsg (Abort Ch) D)}}.

eval_ensure : eval ((ensure E1 C Ch) D)

( {∃Ch1 : Chan S . ∃d1 : dest(void).

eval (writeMsg (E1 (C,Ch1)) d1)

⊗ (ΠV1 : void.return (V1 d1)

( {(∃d2 : dest(void).

eval ((ensureAnswer Ch1 Ch) d2))

⊗ (∃d3 : dest(void).

eval ((has_abort Ch1 Ch) d3))

⊗ return (Ch1 D)})}.

eval_wait : eval ((wait E1 Ch) D)

( {∃d1 : dest(Bool). eval (E1 d1)

⊗ ((return (True d1)( {return (True D)})

& (return (False d1)(

((msg Ch True)(

{(msg Ch True)

⊗ eval ((wait E1 Ch) D)}

& (msg Ch False)(

{(msg Ch False)

⊗ return (False D)}))}.

eval_abort : eval ((abort E1) D)

( {eval (writeMsg (E1 Abort)) D)}.

8.4 Summary
This section reviewed the different constructions of the roar , and
their associated semantic. Then the behaviour of each construction is
encoded using clf . By using a destination-passing style representa-
tion, it is easy to compose the behaviours, and so to provide a full
model of the control architecture.

9 Conclusion
Summary. We have presented the design of a framework to con-

trol the run-time configuration of complex robotic systems: it defines
a control architecture as a network of agents managing individual
resources. This decomposition in resource allows better granularity
and composability than task-based decomposition, it makes the sys-
tem more dependable (no single point of failure), and scales and re-
acts well, as computations are handled by agents which reason lo-
cally. The error representation and the internal agent model allow
the system to react properly to unexpected events, and by reason-
ing on resources, the system can detect concurrent access situations
and automatically propose reconfiguration to handle them. This work
has been inspired by the architecture t-rex, but also by different pro-
gramming paradigm, such as concurrent languages (like Erlang [41],
and its hierarchy of supervision processes), contract programming
languages [17] like Eiffel and its concurrent version Scoop [42]).
roar has been implemented and is exploited on an everyday basis

to control the navigation processes of our research robot Mana. A
very valuable feature from which we have already benefited is that
the integration of new functional modules does not call for any thor-
ough review of the overall architecture: new agents are simply de-
fined and seamlessly added to the network of existing agents.

We also demonstrated that it is possible to encode roar into a rich
enough logic framework that represents both the deliberative and ex-
ecutive parts of the architecture. Such a formalisation is useful for
several reasons. First, it allows a better comprehension of the frame-
work by using a clear and formal semantic. Second, we think that
other control architecture frameworks can be formalized using the
same techniques: this logic representation could then be used as a
common language to compare architecture. Last, and probably most
importantly, this logic representation makes it possible to formally
reason about the control framework, and so to automatically (or semi-
automatically) prove some properties.

Future work. Up to now, the agent specification is manually en-
coded into clf , using the celf tool [46] to verify that the encoding
is correct. Ongoing work includes the automatic generation of the
clf specification from the language description of roar . Then, one
can work on the establishment of proofs of some properties, such as
the existence of non achievable states or the detection of livelocks.

Another perspective is to extend roar to the control of multi-robot
systems. A readily extension is to endow the robots with the knowl-
edge of the resources of the others, thus yielding the establishment of
cooperating schemes in a rather transparent way. A second possible
extension is to integrate a resource allocation algorithm (e.g. within
a market based approach) to roar .
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